
8.

Source Code and Formal Analysis

A Reading of Passage

Ea Christina Willumsen

Transactions of the Digital Games Research Association
2017, Vol. 3, No. 2, pp. 213-235
ISSN 2328-9422
http://todigra.org
TEXT: Licensed under Creative Commons Attribution (CC BY-
NC- ND 2.5) http://creativecommons.org/licenses/by-nc- nd/2.5/
IMAGES: All images appearing in this work are property of the
respective copyright owners, and are not released into the Creative
Commons. The respective owners reserve all rights.

ABSTRACT

Analysis of the source code of video games is not an integrated part

of the formal analysis. Rather, few scholars have investigated how an

analysis of the source code can inform a hermeneutic reading of the

game. In this paper, I will present a reading of the source code of

Passage (Rohrer, 2007), argue for why a traditional focus on authorial

intention is unnecessary when investigating the symbolism and

metaphors of a game, and illustrate how source code analysis can inform

the formal analysis of the executed game. Finally, I will discuss how

the source code relates to the game as a ‘work’, and how it can be used



for studies of symbolism and metaphors. Thus, I will conclude that it

is indeed a valuable method for game studies, although further studies

should expand on the textual relation between executed game and source

code.

Keywords

Source code, formal analysis, authorship, authorial intent

INTRODUCTION

The computational aspect of games has received little attention within

game studies, and only some within software studies, where white-box

analysis, the study of the source code, is not understood in relation

to a hermeneutic interpretation. Hardware, code, and execution are

commonly treated as a “black box”, where the scholar has no access

to the actual code. Already in 1985, Buckles looked into the various

computer files of Colossal Cave Adventure (Crowther & Woods, 1977),

in order to quote all possible texts generated by the system in reply

to player input. One of the first scholars to point out the relevance of

reading the code of a game is Konzack (2002), who, in his otherwise

very humanities focused seven layer analysis model includes both

hardware and program code. He argues that “[i]n a complete analysis of

a computer game every layer of the computer game in question should

be analysed, but it is still possible to make an analysis of a computer

game with out [sic] taking every layer into account” (Konzack, 2002,

p. 92). Even though he does not use the term, this makes Konzack not

only one of the first game scholars to argue for the relevance of studying

software in game studies, where the source code is considered in relation

to the executed game, but also one of the few, if not only, to state that a

complete analysis must also include an analysis of the code.

214 ToDiGRA



There are two main reasons why the source code is not often considered

in the formal game analysis: 1) the fact that we rarely have access to

the source code of the game, and 2) that the scholar may not be able

to translate the code into anything meaningful, which can be both due

to lack of experience in reading code, or because the analysis of the

program as static text does not contribute to the comprehension of the

game (Konzack, 2002).

The first reason is still a general concern. However, due to the expanding

success of what is often referred to as ‘indie games’, and the popularity

of open-source software, more source codes are published and thus

available to the researcher (Lipkin, 2012). Therefore, the method of

source code analysis seems especially relevant for the study of games

authored by individuals or small teams, and where the auteur-style mode

of production makes it more meaningful to search for an authorial intent.

Oftentimes, these games are much less complex in terms of source code

than e.g. AAA games, which makes them more easily accessible for

analysis, as the complexity and length of the source code influences

its readability and the time it takes for the scholar to get an overview

and understanding of the underlying structures. As such, the complexity

and length of the source code may directly influence the possibility and

likelihood of using the code in a formal analysis, as the source code

of some games will be more readily accessible than others. The second

reason is one of the main motivations for this paper; I wish to illustrate

that it is possible to conduct a hermeneutic reading of the source code,

which is studied in relation to the executed game, without having to

dive deep into algorithms or understand complicated syntax. Quite the

contrary, it should be possible for most game scholars who have just a

little experience of reading or writing code to gain valuable insights from

the analysis of the source code from the game in question, as a significant

part of the analysis in this paper focuses on the naming of variables

and simple representations of rules actualised in the executed game. I

wish to illustrate exactly how this method is useful for game analysis

by studying Passage (Rohrer, 2007), which has already been a target for

other researchers exploring the link between computer science and game

Source Code and Formal Analysis 215



studies (Robinson et al., 2015). The game has also been studied outside

of computer science, e.g. as experiential metaphor (Harrer, 2013), as

an art game, specifically in relation to Jason Rohrer’s author statement

(Parker, 2012), and in relation to the proceduralist line of thought

(Treanor & Mateas, 2013). Because of the great interest from

researchers, with various interpretations of the meaning or message of

the game, it serves as the perfect case for illustrating how source code

analysis can prove useful in game studies. I will argue that such a reading

can be used to study metaphors and symbolism in a very different way

than what only the executed game allows for. When combining the

formal analysis of the executed game with the analysis of the source

code, I believe that we can find stronger support for a traditional

hermeneutic interpretation of metaphor and symbolism. As such, much

of what is to be perceived by the player in the executed game is

connected to elements in the code, which pose arguments for or against

common interpretations. As such, this paper emphasises how games can

be understood as second-order design, where the designed object is the

code itself which, when actualised, produces a text in the form of the

executed game. To this day, only few game scholars, including Mateas

(2003), Wardrip-Fruin (2009), and Montfort and Bogost (2009), have

used source code analysis as a method for studying games, and they

have all approached the source code in various ways. One thing existing

applications have in common is their focus on traditional authorial intent,

which I will argue does not have to be an inherent part of source code

analysis in the context of game studies. For the case of Passage this also

means that the creator statement from Jason Rohrer (2007) should be

unnecessary for a formal reading of the game, and I will illustrate how

much of the information provided in this paratext is easily found in the

source code. In the next chapter, I will outline the critique of authorial

intent, in order to present how other scholars’ readings of the game are

all based on traditional notions of intentionality and authorship where

explicit author statements are used to explore and understand the game

object itself.

216 ToDiGRA



AUTHORIAL INTENT AND THE INTENTIONAL

FALLACY

The notion of authorial intent is originally a part of literary theory

and aesthetics. Its relevance has been, and is still, widely discussed

in relation to literature as well as games. One of the most influential

critiques of the increased focus on the author comes from Wimsatt and

Beardsley (1946), who argue that “[i]f the poet succeeded in doing it

[communicating the authorial intent], then the poem itself shows what

he was trying to do. And if the poet did not succeed, then the poem

is not adequate evidence, and the critic must go outside the poem—for

evidence of an intention that did not become effective in the poem”

(Wimsatt & Beardsley, 1946, p. 1-2). This argument is directly

translatable to games; if the game manages to communicate what the

author intended, there should be no need for studying this intention. If

the game fails in doing so, the researcher must go outside the game, as

done by Mateas (2003) in his study of Pac-Man (Iwatani, 1980), who

bases his investigation on interviews with Pac-Man’s creator, Iwatani, to

find evidence of this intention. But the discussion of authorial intent is

complicated further when considered in relation to games, as it can be

difficult and sometimes impossible to define the author on a production

team of several hundred people. Who is to encode the game object with

meaning, and who can then serve as “evidence” when investigating a

potentially failed implementation of this meaning? Is it the lead designer,

who is responsible for the overall vision of the game, the level designer

who designed the specific level of the game, the artist who did the

artwork for this level of the game, or the programmers who implemented

parts of the algorithms behind the specific level of the game? Scholars

who study the intention of the ‘author’ tend to focus on games developed

by a single person (Montfort & Bogost, 2008; Robinson et al., 2015;

Wardrip-Fruin, 2009), which is most likely because of the difficulties

involved in identifying an author in AAA productions. If the author

can’t be defined, one cannot talk about the traditional notion of authorial

intent, as known from literary theory.

Source Code and Formal Analysis 217



In The Death of the Author, Barthes (1977) writes that “[…] it is

language which speaks, not the author; to write is, through a prerequisite

impersonality, […] to reach that point where only language acts,

‘performs’, and not ‘me’” (Barthes, 1977, p. 143). The same can be

argued for games where it is the game itself, including its hardware

and software, interface, controller, and rule system, which speaks, acts,

and performs, and not the ‘game artist’ or the ‘author’. This perspective

suggests the study of games, as Foucault identifies, ‘works’ (Foucault,

1969, p. 207). When studying a text as a ‘work’, Foucault argues that

“the task of criticism is not to bring out the work’s relationships with

the author, nor to reconstruct through the text a thought or experience,

but rather to analyze the work through its structure, its architecture, its

intrinsic form, and the play of its internal relationships” (Foucault, 1969,

p. 207).

Surprisingly enough, this seems to immediately align with the

proceduralist school of thought, which is followed by scholars studying

the source code of games, such as Mateas (2003), Wardrip-Fruin (2009),

and Robinson et al. (2015); it is the game object itself, as a ‘work’, which

speaks, and not its relationship to the author. However, Bogost argues

that “[p]ersuasion is related to the player’s ability to see and understand

the simulation author’s implicit or explicit claims about the logic of the

situation represented” (Bogost, 2007, p. 333). In this, Bogost directly

argues that the author has a relevant role, and that the persuasive power

of a game is directly related to how the player understands the author

in relation to the work. This is a complete contradiction to Foucault’s

critique of authorial intent as well as his approach to texts as ‘works’.

It therefore also makes sense that many of the scholars who build their

arguments on the concept of procedural rhetoric tend to over-emphasise

the role of the author in what may otherwise be understood as formal

analyses, like Wardrip-Fruin’s (2009) study of Façade (2005), Mateas’

(2003) analysis of Pac-Man (1980), and Robinson et al.’s (2015) reading

of Passage. They all focus on the author and his intent, in relation to

how the game object is designed to convey meanings, and thus fall under,

what Wimsatt and Beardsley call, ‘the intentional fallacy’ (Wimsatt &

218 ToDiGRA



Beardsley, 1946). This sort of focus on intent is old-fashioned and was

abandoned in most fields quite a while ago. One can therefore wonder

why it is still the dominant mode within source code analysis in game

studies.

About PASSAGE

Passage is game designer Jason Rohrer’s third game, which was

developed for Kokoromi’s curated GAMMA 256 event (Rohrer, 2007).

The side-scrolling minimalistic game has an atypical narrow field of

vision, where the player can only see limited horizontal “rows” of the

map, although the world continues beyond what is immediately visible.

The game consists of one level only which is procedurally generated,

and which the player can decide to traverse either with an individual

avatar or with a duo consisting of the avatar and a spouse. The spouse

is activated when the player collides with the graphical representation

of the spouse on the map. After the spouse has been picked up, narrow

paths can no longer be traversed, and thus fewer points can be collected

through collision with treasure chests (some of which contain valuables

that are translated to points, while others contain something resembling

flies or dirt). Points are earned by colliding with treasure chests and

simply by progressing through the level, and while it is harder to gain

points from chests when having picked up the spouse, this mode of play

grants an additional point bonus, in the documentation referred to as the

explorer factor.

Figure 1: Screenshot of Passage (2007)

When the game is started, the avatar is located to the far left of the

screen, with a blurred part to the far right of the screen, which is revealed

through play to be the remaining level. As the player progresses, the

Source Code and Formal Analysis 219



avatar moves further to the right of the screen, all the while its graphical

representation (and that of the spouse, if she is picked up) seems to

age. Eventually the avatar will move slower, and if the spouse has

been picked up she will transform into a gravestone. The avatar too

will transform into a gravestone and the game will end after exactly 5

minutes, regardless of the space traversed during play.

APPROACHES TO PASSAGE

As previously stated, several scholars have studied Passage, all sharing

the interest of how the game conveys meaning. Parker (2012) argues that

Passage is the first prominent ‘artgame’, for the definition of which he

emphasises identifiable author figures, as well as a specific ‘message’

which the player is to discover (ibid, p. 42). Although Parker argues

that such characteristics are not mandatory for a game to qualify as an

artgame, it is exactly the author and the intended message of Passage

which he studies in his article. He identifies what I will later uncover

as the spouse, the female-looking character that follows the player after

colliding with her on the map, as a companion. This is linked to what

Parker identifies as the autobiographical character of Rohrer’s games –

Rohrer articulates in his creator statement that the game is based on his

thoughts about life and death. However, Parker also notes the irony of

the many readings of Passage, as Rohrer states that there is no right

or wrong way of interpreting the procedurally generated game. This is

somewhat contradicted by Rohrer’s presentation of his own intentions,

that has, after being published in the creator statement, guided most

readings of the game.

Another scholar who has engaged with Passage is Harrer (2013), who

in an initial formal introduction of the game starts interpreting the

symbolism of the executed game: “[r]unning into her triggers an

animated heart that represents their falling in love” (Harrer, p. 616),

she argues, acknowledging the existence of the creator statement, yet

aiming her analysis at the symbolism and metaphors of the game, rather

220 ToDiGRA



than what Rohrer intended (or, at least, argues in his creator statement

that he intended with the game). When Harrer discusses the game as

an experiential metaphor, however, she leans on the creator statement,

using Rohrer’s quotes to enforce her point that the death of, what she

(correlating with Rohrer’s creator statement) terms the spouse comes, as

a shock to the player.

At the DiGRA conference 2015, William Robinson, Michael Mateas,

and Dylan Lederle-Ensign presented a reading of Passage. They argued

for what they term a procedurally literate inspection (Robinson et al.,

2015) in which processes are read as metaphors. Their approach is

grounded in Bogost’s theory of procedural rhetoric (Bogost, 2007), and

follows the notion that meaning can be found in the game object itself.

An author encodes this meaning and hence it should be studied in

relation to the author’s intentions. Therefore their study is based on

Rohrer’s creator statement, which has its limitations; Rohrer describes

his intentions with the game, but does not go into details about the

specific code and how it reflects the meanings that he wished to encode

in the game. Uncovering the meanings inscribed by Rohrer in the source

code becomes the mission for Robinson et al., who end up having to

draw potential conclusions, as they do not have the necessary knowledge

from the author to validate any of the results of their analysis, e.g.

the goals of the game metaphorically relating to everyday trade-offs

(Robinson et al., 2015, p. 3). It is exactly this problem Wimsatt and

Beardsley (1946) refer to when they argue that the poem, or in this case

the game, is not sufficient evidence in supporting any argument about the

authorial intent. Although Robinson et al.’s reading is indeed interesting,

it does not explore the full potential of the source code in relation to their

metaphorical reading of the game. Instead, they conduct a metaphorical

reading of the code itself, not directly related to the executed game, and

one can therefore question the study’s relevance for the study of the

game artefact, often conceived of as the executed game itself.

All the readings briefly introduced above build, in one way or another,

on Rohrer’s creator statement, acknowledging his authorial intent as core

Source Code and Formal Analysis 221



to an analysis of Passage. Parker’s and Harrer’s studies are focused only

on the executed game, that is, that which is played and perceived by

the player, and what is usually simply referred to as ‘the game’, while

Robinson et al.’s study deals with the source code of the game. The

aim is now to illustrate that similar interpretations can be made from a

reading of the source code, rather than based on the creator statement.

As such, the goal is to eliminate the notion of traditional authorial intent

in the analysis, and thereby not studying Rohrer’s creator statement as a

paratext.

ANALYSIS

I will demonstrate, with Passage as an example, that we can analyse the

source code in a meaningful way, and that the findings can be logically

connected to interpretations of the executed game. When analysing the

code we do not have to get involved with the intentional fallacy per

se. If we acknowledge the executed game as second-order design, we

must also accept the relevance of the source code as the mother-text, that

which is actually designed, and thus it becomes meaningful for the study

of the executed game. However, in this case one may understand the

source code as an author itself, or as a type of creator statement, in which

my initial distance to the notion of authorial intent becomes problematic.

I will return to this problem in the discussion, but for now, I will conceive

of the source code as a text between author and game, which may help

us understand better the executed game itself.

Code offers many aspects and dimensions that can be analysed. For

the sake of clarity and conciseness, I will focus the discussion in this

paper on naming in the context of processes as well as processes, which

constitute rules that are not necessarily clearly articulated in the executed

game. Naming refers to the names of variables and methods in the code.

These are given by the programmer, but most programming languages

allow for meaningless combinations of letters to form the names

(Deissenboeck & Pizka, 2006). Many programmers and scholars argue

222 ToDiGRA



for a set of unified rules that dictates exactly how one should name

variables and methods, as this has a direct influence on the readability

and in turn the overall program comprehension (ibid). Although there

are no fixed rules for naming, there are some norms: there should be

consistency in whatever method the programmer uses for naming, the

names should be concise, and method names should, if possible, be

formed following a verb-noun or verb-noun-noun structure (ibid).

Naming can be seen as a part of the code aesthetics, and can therefore be

studied in relation to program comprehension, however in the following

analysis, I will search to make sense of method and variable names as

parts of a formal analysis of video games. My argument is that much

meaning can be interpreted from the code itself, and that much of this

meaning may not be immediately evident in the executed game. As

such, some of the things that are usually interpreted on an abstract and

symbolic level in the traditional game analysis will be hardcoded into

the game’s source code through naming. I believe that this allows us

to arrive at informed interpretations without turning to creator/author

statements and other secondary sources in which the programmers and/

or creators express their intent and meaning of the game. It should be

noted, though, that it is of course possible for the designer to name

variables freely and thus that variable names, like any other sign, must be

interpreted in the context of the executed game. If variable names reflect

certain ideologies, e.g. socialism, without these being in any way visible

in the executed game, it does not mean that the game can or should

be understood as a socialist game. Rather, the scholar must explore the

relation between the variable names and the executed game, and she may

even find that there is no apparent connection between the two. Yet, as

the source code is a part of the formal game object, it can (and possibly

should) be understood in relation to the game as a work – something I

will return to in the discussion. This also means that two different source

codes, which produce the same executed game, must be considered as

two different works.

As with any other game example, large parts of Passage’s code are

not relevant to this investigation. The few lines that are useful for the

Source Code and Formal Analysis 223



analysis have been found by playing through the game, interpreting

symbolism and metaphors, and returning to the code to see if any of

this is spelled out in the code. Moreover, as I will present below, I

attempted to compare my findings to Rohrer’s creator statement to see

how it relates to my findings. This is not to argue against my previous

statement that authorial intent in some cases is unconstructive – rather it

is to prove that some of the interpreted meanings of a game can be found

in the code itself and do not depend on any communication with the

“author” or “creator”. It should be noted that the source code to Passage

is somewhat difficult to access
1
. The game has a built-in script, which

links and compiles various files together, rather than a traditional set-

up with one folder containing the various classes. I have therefore only

investigated Game.cpp, containing 1300 lines of game logic code, which

makes calls to various other scripts, for example, graphics, sound, etc.

Figure 2 – Excerpt from Passage (2007), line 946-949 in Game.cpp

Figure 3 – Excerpt from Passage (2007), line 1167-1172 in Game.cpp

1. I owe thanks to Dylan Lederle-Ensign, who provided valuable hints for navigating Passage’s

file structure.

224 ToDiGRA



When the game is played, the player will find that the avatar changes

graphically, indicating aging. At some point, the avatar will turn from

being a graphical representation of a human to being a graphical

representation of a gravestone, as pointed out by Harrer (2013). This

kind of signification is unambiguous to many, yet the example above

illustrates how it is also evident in the source code—what we as players

interpret from the symbolism of the gravestone as death of the avatar

is clearly written in the script as death of the player, which will make

the avatar stop moving. Figure 3 illustrates how both spouse and player

(avatar) will die when reaching a specific age, calculated based on the

time played – that is, even if the player does not move the avatar

around, it will age, and eventually die when its age value reaches 0.95,

an arbitrary number which does not necessarily refer to the actual age

of 95 years. The two examples above serve as examples of how code

reading in the analysis can support arguments of interpretations and

contribute with new meanings. It also illustrates a strong relationship

between player and avatar, which could be interpreted as if there is no

character in the game, but only an avatar, which is meant as a graphical

representation of the player and is not articulated as a manifestation of

Rohrer himself. The example above also reveals that the gameworld

does not end as such, but that the avatar turns into a gravestone and

stops moving once dead. This is articulated in Rohrer’s (2007) creator

statement, where he writes that “[…] even if you spent your entire

lifetime exploring, you’d never have a chance to see everything that

there is to see” (ibid, paragraph 8). However, the code makes that visible

to us (also articulated in the map generation script), hence we do not

need the creator statement to figure that out. The meaning of being

in an infinite world, where you will not have enough time to explore

everything is to be interpreted by the scholar, if she wishes to do so, but

the potential endlessness of the graphics, and the fact that not all can

be seen, is hard-coded in the source code itself, and so is the length of

the avatar’s life, emphasising the player’s lack of autonomy, both in the

game as well as metaphorically in life.

Source Code and Formal Analysis 225



Figure 4 – Excerpt from Passage (2007), line 951-956 in Game.cpp

This second example illustrates how the 8×8-pixel human, which follows

the player once the player, collides with its graphical representation,

triggering a heart animation (see fig. 5 below), is presented as a spouse.

This is something, which the executed game never articulates, but which

Rohrer explains in his creator statement. Parker (2012) interprets the

spouse as a companion, whereas Harrer (2013), possibly influenced by

the creator statement, uses the same term as Rohrer, namely spouse.

It is possible for the player to interpret the human companion as a

spouse, a wife, a friend, a companion, or whatever she wishes, but it

is stated in the code that this being is the spouse. This means that the

scholar should, when studying the source code as a part of the formal

analysis, consider the meaning of the term ‘spouse’ in relation to the

graphical representation, to explore how the variable name can inform

the interpretation in question. Moreover, the code example shows how

the death of the spouse will result in slower movement of the avatar. This

decrease in speed is only activated if the player picks up the spouse and

she dies, and therefore the player will not be slowed down if she decides

not to pick up the spouse. This is something that Rohrer explains in

his creator statement, but which is articulated as a process in the source

code, and thus an example of how rules, which may not be immediately

clear in the executed game, can be better understood by looking into the

code.

226 ToDiGRA



Figure 5 – Excerpt from Passage (2007), line 1203-1214 in Game.cpp

The code excerpt in fig. 5 shows that the player can only ever have

one spouse during a play-through, as the heart animation, which is

triggered when colliding with the spouse and picking her up, is only

generated if the player has not yet met the spouse, the spouse is not

dead, and the spouse is not next to the player (that is, the spouse is

not currently active). That also means that the game only ever generates

one instance of the spouse per play-through. This is never commented

upon in the creator statement, but can indeed inform the formal analysis

of the game, as monogamous, heteronormative standards are hardcoded

into the game. Depending on the reading, one might even argue that

this conveys that there is only one right person for you in the world.

This specific example illustrates how an analysis of the source code can

not only exclude the use of creator statements and interviews, but also

contribute to the analysis of games in new and meaningful ways.

Figure 6 – Excerpt from Passage (2007), line 1241-1251 in Game.cpp

Source Code and Formal Analysis 227



Figure 7 – Excerpt from Passage (2007), line 1004-1012 in Game.cpp

The fifth example (fig. 6) from the source code of Passage shows how

points are calculated differently if the player picks up the spouse. A

certain “spouse explorer factor” (which is previously given the value of

2 in the code) determines exactly how the overall explorer points are

calculated. The score will always be twice as high with the spouse and

her explorer factor than without her. Along with the way the spouse

blocks your possibilities of navigation on the map, as illustrated in the

code in fig. 7, this creates a situation where there are points to be

gained both with and without the company of the spouse. Rohrer too

accounts for this in the creator statement, but rather than commenting

on the meaning of this way of collecting explorer points, he presents

the scoring-system as a part of the formal rule-system of the game. Yet

again, this proves that the creator statement is not needed to make many

of these conclusions.

DISCUSSION

As can be seen in the analysis, I have found different ways in which

the source code is useful for a formal analysis of the game. The most

crucial way in which source code analysis facilitates more in-depth

understanding is how it can help the scholar uncover dimensions of the

game object, which are not necessarily visible in the executed game.

This is illustrated in the examples presented above, and as noted in the

analysis, these cases fall under two categories: 1) cases in which the

228 ToDiGRA



specific variable or method name reveals information about the game

object and its potential representations on the interface, and 2) examples

that show how specific implementations of procedures establish rules

in the game that cannot necessarily be seen in the executed game. The

first category can support interpretations of the executed game in the

sense that it contributes to an understanding of metaphors and symbols,

as the naming of the variable or method may help the scholar to unravel

a potential reading of the game. A good example is the name of the

spouse; not only does this naming clarify our understanding of the

companion-like pick-up, it also guides further readings of the code where

the companion-as-spouse contributes to deeper readings, such as the idea

that the only-once-generated and picked-up spouse may reflect a certain

sense of heteronormativity. This method can be useful in analyses where

the symbolism is especially ambiguous and hard to interpret. Moreover,

it enforces a focus on games as second-order design – that which is

designed by an author is not the executed game but the source code.

Hence, it is fruitful to study whether there is a correlation between

interpreted messages and meaning in the executed game as well as in the

source code. This, I believe, is especially true if we wish to isolate the

analysis from the author’s intentions, goals, “points”, etc., as it allows us

to answer the question of whether any or all of the two levels of the game

that can be studied formally appear to communicate a specific message

or can be attributed a specific meaning. Yet, as previously argued, the

source code itself can be understood as an author, which influences how

we dare interpreting the executed game. This creates a new paradox of

an intentional fallacy, where the scholar must explore the relationship

between code and executed game to assess whether variable names are

at all worthwhile or reliable to study in the formal analysis.

In the second category, the source code is used to get a perfect

understanding of the system structure and it draws some resemblance to

the fan practice of theorycrafting. However, whereas variable names can

be understood as a type of pseudo-representation, the rules constituted by

processes do not signify anything in themselves. Only when understood

in relation to the executed, playable game they gain meanings, as they

Source Code and Formal Analysis 229



constitute the borders of play. Because these rules are not necessarily

visible in the executed game, they raise the question of whether they, and

the whole of the source code, can truly be understood as a part of the

‘work’ of the game, of whether it is simply another form of paratext that

can be explored similarly to author/creator statements.

The Foucauldian meaning of the ‘work’ emphasises an analysis of the

structure, architecture, intrinsic form, and internal relationships of the

work itself, rather than of its relationship to the author (Foucault, 1969).

The analyses found in this paper do indeed study the structure of the

game, which can be perceived more structurally and numerically in the

code than in the executed program. Moreover, the source code facilitates

an exploration of the internal architecture of the game, and not just

that which is represented when executed and played. All of this relates

to Foucault’s definitions of what constitutes a ‘work’. However, the

source code is not the executed game object. We have to accept that

we are, when working with source code analysis as a part of a formal

game analysis, working with different texts. The relationship between

these texts can be understood in various ways; the source code can

be seen as the mother-text and the executed game as a text designed

by its ‘parent-text’. The executed game can be seen as the main text,

whereas the source code can take on the role as another text related to the

main text, e.g. as a hypotext or paratext. The source code itself can be

understood as several texts, as the source code consists of respectively,

code and comments, which may be understood as separate texts, which

are ontologically different. With the code as a hypotext, the analysis can

explore the executed game as a subsequent text to the source code. This

would indicate that the executed game is not authored as a part of the

source code, but that their relation is influenced by, among other things,

the compilation and execution of the program. The many complicated

ways in which we can understand the relations between code, executed

program, and player have been studied in depth by Aarseth (1997). He

suggests the concept of cybertext, which prioritises the influence of

the medium on the dynamics of scriptons (defined as strings as they

appear to the reader) (ibid, p. 62-63). Other scholars have searched to

230 ToDiGRA



make sense of the source code’s place in the text/paratext relationship

(Desrochers, 2014). In relation to the work conducted for this paper I

will argue that all approaches seem somehow productive, yet they all

pose a question of authorship, and create a paradox of how to dismiss the

notion of the intentional fallacy. If the source code is seen as a paratext,

it does not solve any problems of authorial intentions; rather it facilitates

further discussion of authorial intent understood as authoring of the code

or the authoring of the executed game, and whether we can talk about

one or several individual authors, or one heuristic author. As a paratext,

the code is only as relevant for the formal analysis of the game as an

author statement or wiki page, because of its distanced relationship to the

text or executed game in question.

Neither hypotext, cybertext, nor paratext may be the right ways to make

sense of the relationship between the game and its code, and hence what

status the source code should have in the formal analysis. However, I

believe that the discussion of source code as a text illustrates that more

research is still needed to point out exactly how source code analysis

can be situated as a method in game studies. I also believe that I have

demonstrated how such readings of the code can inform the formal

analysis. The next step must be to unravel how a full integration of the

method for a comprehensive game analysis contributes to the academic

work. This should be followed not as much by a specific study but rather

by a discussion of the relations between code, game, and everything in

between.

Compared to other readings of Passage, I believe that the analysis of the

source code is indeed a valuable way of studying several dimensions of

the game object. I have illustrated that it allows us to consider elements

that contribute to an understanding of ‘message’ or ‘meaning’, without

engaging with creator statements or other traditional authorial

documents. As such, it is possible, at least to some degree, to focus

on the game object itself, rather than intentions of the authors, which

allows for a more formal analysis. The source code analysis may not give

us more information than the author statement would, yet it will be a

Source Code and Formal Analysis 231



different type of information, which can exclude the use of second-hand

references, such as the author statement. However, as previously pointed

out in the discussion, the source code consists of comments as well as

code, and the author can thus still express intentions through comments

and variable naming. It is therefore necessary to further study exactly

how we can understand the source code as a text, or several texts, in

relation to the executed game, and in turn how the source code can be

understood as different from author statements.

CONCLUSION

This paper has illustrated how source code analysis can serve as a tool

for a formal game analysis. By analysing the source code of Passage,

I have identified two ways by which such an analysis proves useful.

First, the variable or method names can reveal information about the

game object and its representations in the executed game, which supports

an analysis of symbolism and metaphors. Second, the code can contain

processes, which are not necessarily visible in the executed game.

Exploring these processes can be likened to practices of theorycrafting,

as it helps us better understand the system structure of the code and

hence the game. Both ways of exploring the source code can be applied

in the traditional formal game analysis and contributes with new

meanings.

I believe that the study proves that a reading of the source code is useful

for a comprehensive analysis of a game, and that it may help avoid the

intentional fallacy of prioritising author statements over close analysis of

the text. However, we must methodologically understand the approach

in relation to the game object, that is, explore exactly how we can

understand the code in relation to the executed game. Moreover, in order

to justify how source code analysis can avoid the intentional fallacy, we

must study in depth whether game designers and programmers can be

understood as heuristic authors, whether we have to accept the author as

an individual, at least for cases where the game is made by one person,

232 ToDiGRA



or if there is a third, advantageous way of conceptualising the author(s)

of video games. Until then, source code analysis poses some ontological

challenges to the understanding of games as ‘works’.

BIBLIOGRAPHY

Aarseth, E. J. (1997): Cybertext: perspectives on ergodic literature.

Baltimore: JHU Press.

Barthes, R. (1977): Image, Music, Text. London: Fontana Press.

Bogost, I. (2007): Persuasive games: The expressive power of

videogames. Cambridge: MIT Press.

Buckles, M. A. (1985): Interactive Fiction: The Computer Storygame

Adventure. Doctoral Dissertation, University of California, San Diego.

Crowther, W. & Woods, D. (1977): Colossal Cave Adventure. [PC/Unix]

Deissenboeck, F., & Pizka, M. (2006): Concise and consistent naming.

In Software Quality Journal, 14(3), pp. 261-282.

Desrochers, N. (2014): Examining Paratextual Theory and its

Applications in Digital Culture. Hershey: IGI Global.

Foucault, M. (1969): What is an author. In Aesthetics, method, and

epistemology (Vol. 2), ed. by Faubion, J.D., 1998. New York: The New

Press

Harrer, S. (2013). From Losing to Loss: Exploring the Expressive

Capacities of Videogames Beyond Death as Failure. In Culture

Unbound: Journal of Current Cultural Research, 5(4), pp. 607-620.

Iwatani (1980). Pac-Man. Tōru Iwatani/Namco.

Source Code and Formal Analysis 233



Konzack, L. (2002): Computer Game Criticism: A Method for Computer

Game Analysis. In Proceedings of Computer Games and Digital

Cultures Conference.

Lipkin, N. (2012): Examining Indie’s Independence: The Meaning of”

Indie” Games, the Politics of Production, and Mainstream Co-optation.

In Loading… The Journal of the Canadian Game Studies Association,

7(11).

Mateas, M. (2003): Expressive AI: Games and Artificial Intelligence. In

Proceedings of Level Up: DiGRA 2003.

Montfort, N., & Bogost, I. (2009): Racing the beam: The Atari video

computer system. Cambridge: MIT Press.

Parker, F. (2012). An Art World for Artgames. In Loading… The Journal

of the Canadian Game Studies Association, 7(11).

Procedural Arts (2005). Façade. [PC] accessed 09.12.16 at

http://www.interactivestory.net/

Robinson, W., Lederle-Ensign, D., & Mateas, M. (2015): Procedural

Deformation and the Close Playing/Reading of Code: An Analysis of

Jason Rohrer’s Code in Passage. Abstract from DiGRA 2015: Diversity

of Play.

Rohrer, J. (2007): Passage. [PC] accessed 20.01.16 at

http://hcsoftware.sourceforge.net/passage/

Rohrer, J. (2007): What I was trying to do with Passage. Web-post,

published 2007, Potsdam, NY, accessed 03.12.15 at

http://hcsoftware.sourceforge.net/passage/statement.html

Treanor, M., & Mateas, M. (2013). An Account of Proceduralist

Meaning. In Proceedings of the 6th International Conference of the

Digital Research Association.

234 ToDiGRA



Wardrip-Fruin, N. (2009): Expressive Processing: Digital fictions,

computer games, and software studies. Cambridge: MIT press.

Wimsatt, W. K., & Beardsley, M. C. (1946): The Intentional Fallacy. In

The Sewanee Review 54 (3), pp. 468-488.

Source Code and Formal Analysis 235


