
SPORE’S PLAYABLE PROCEDURAL CONTENT

GENERATION

GILLIAN SMITH

Northeastern University

gi.smith@neu.edu

Spore (Maxis, 2008) was first conceived as SimEverything: a

conceptual followup to the wildly successful SimCity (Maxis

Software, 2003) and The Sims (Maxis, 2000). The game would

operate at a galactic scale, with the player able to interact at

multiple layers of abstraction, inspired by the concept of being

able to zoom out on the universe by “powers of ten” (Johnson,

2013). The entire game would be enabled by a procedural

simulation of the universe and procedural generation of planets

and creatures. Will Wright, the father of the Spore concept, spoke

excitedly about creatures and planets being represented as

“DNA”, which would enable the vastly reduced file sizes

necessary to have a rich, shareable, procedural universe. The

game spent years in development, breeding hype among

reviewers and game enthusiasts. When Spore was finally released

in 2008, it was met with mixed reviews—confusion and criticism

over the shallow gameplay and poor model of evolution mingled

with excitement over player creativity and user-created content.

89



Spore is a game that is broken into five core “stages”. The cell

stage has the player take on the role of a single-celled organism,

fighting for survival and the right to evolve into a more complex

form of life. The creature stage has the player take control of

this fledgling lifeform as it interacts with other creatures in its

world, guiding the creature’s development and evolution to give

it a competitive advantage. The tribal stage marks where the

creature attains intelligence and the semblance of a society; in

this stage, the player must gather food to help grow the tribe

and socialize with other tribes on the planet. The civilization

stage has the player grow their tribe into a larger civilization,

competing with others on the planet for resources. Finally, in the

space stage, the player has become the dominant civilization on

the planet, and ventures into space to meet and conquer other

planets.

In its gameplay, Spore initially seems to present itself as a single-

player strategy game, inviting the player to build up a civilization

that can compete on the galactic stage. However, the relatively

simplistic design for the five “mini-game” phases it presents

makes it a failure in this regard. Where the game shines is in its

support for player creativity via a suite of design tools that allow

the player to create professional-quality models and creatures

and share them with other players. All content created by players

is saved into the Sporepedia (Maxis, n.d.), a publicly-accessible,

online repository.

The core tool to support player creativity sits at the transition

from the cell stage and is then used throughout the creature

stage. The creature creator lets the player design and “evolve”

creatures using a library of existing creature parts—arms, legs,

eyes, lips. The tool is so delightful to play with that it was initially

released as a standalone toy before the full game was released.

It includes extensive procedural support for creature creation;

it will procedurally texture and animate any creature created

within the tool without any assistance required from the player.

90



However, the creature creator also defines some of the

controversy around Spore. Its failure to model evolution in any

way turns Spore into a game about intelligent design, rather than

a simulation of the universe.

To understand Spore—in both its successes and failures—is to

understand procedural content generation (PCG), user-created

content, and how the game fosters a relationship between them.

The much-acclaimed design tools lean heavily on PCG to enable

users to create content for the game, and its use to support player

creativity fed both the excitement and controversy around Spore.

However, the mismatch between how the player interfaces with

this procedural support and the generator’s actual design leads

to a shallower model of evolution, resulting not only in criticism

of the game’s failed scientific underpinnings but also too much

freedom for players to change their creatures to address

gameplay challenges. This article explores the ways in which

PCG is deeply integrated into Spore.

Nurturing Life from Cell to Creature

Let’s begin our examination of Spore midway through the cell

stage of the game. In this stage, the player navigates their cell

around a vast procedurally generated ocean, filled with other

cells at varying scales. The player has one main evolutionary

decision to make in this stage of gameplay—whether their cell

should be an herbivore or a carnivore. Herbivores seek out green

plant life to eat, while carnivores chase down other, smaller cells

for a snack. Both herbivores and carnivores are subject to attack

from larger cells that are floating around in the primordial soup.

When the “giants” of this playground attack each other, “DNA”

is released for the player to pick up. These pieces of “DNA”

correspond to components that can be added to the single-celled

lifeform to alter how it moves, eats, attacks others, and defends

itself.

91



The gameplay in this stage of the game feels almost meditative

at times, and is heavily exploration-driven. The procedurally

generated environment means that each time the player picks

up this stage, they are experiencing vastly different content that

makes it impossible to memorize paths. The simple rules for play

and randomization of other content do not lend themselves to

developing complex strategies for survival. Rather, the player is

content to float around the pool, seeking out sustenance and

occasionally breaking from this meditative state to either attack

or defend oneself against other cells.

As the little cell eats and grows, it has several opportunities to

seek out a mate, thus allowing the player to guide its evolutionary

path by adding and removing cell parts. Entering a mating ritual

launches a simplified version of the creature creator, where the

player can manually alter the function of the organism using

whatever cell parts are currently available, as well as changing

its appearance through recoloring and retexturing it. The fiction

for entering the creature creator—that a single-celled organism

would reproduce sexually—is not based in science in the

slightest. However, the transition is done playfully and the ability

to make sweeping changes to even this tiny single-celled

organism helps keep the player invested in their creation.

Figure 1 shows the use of the game’s editing tools to create a

more “evolved” cell, with flagella to help it move and turn more

quickly and a stinger to defend itself against attacks from the

rear. The player is given free reign for altering the cell, with the

only limit being the number of cell parts that the player has found

thus far.

92



Inside the creature creator, altering the cell’s composition. The player drags

components on and off of the main cell “body” to make changes, and is free to

make as many changes as desired.

Once it has eaten enough from the ocean that it is as large as it

can get, our little cell is ready to turn into a complex, multi-celled

organism. In a shockingly vast evolutionary leap, the cell enters

the creature creator, the player gives it legs, and the newborn

creature toddles onto land to start its new life and push the player

into a new stage of gameplay (Figures 2-3).

93



Figure 2. The cell becomes a creature with the addition of legs.

Figure 3. The new creature walks onto land.

In the cell stage, PCG was used to procedurally texture and color

the creatures; however, this transition phase marks the first time

that the game uses PCG to support the player in creating

functional creatures. A procedural animation system determines

how the cell should walk around space based on where the

creature’s legs are placed.

As in the cell stage, the creature stage involves the player

collecting fragments of DNA that correspond to creature

94



components. When the player is ready to “evolve” their creature,

they click the “mating call” button to find a mate for the creature.

An elaborate (procedurally animated) mating dance occurs, the

creature lays an egg1, and the creature creator loads so that the

player can design the next generation to be born (Figures 4 – 5).

Figure 4. Having defeated her first enemy and found DNA, the

creature goes back to the nest and engages in a mating ritual.

Figure 5. Inside the creature creator, it is possible to completely reconfigure the

components that make up the creature, as well as its appearance. Our new creature bears

little resemblance to the parent.

95

http://wellplayed.pressbooks.com/files/2015/04/figure42.jpg
http://wellplayed.pressbooks.com/files/2015/04/figure42.jpg
http://wellplayed.pressbooks.com/files/2015/04/figure51.jpg
http://wellplayed.pressbooks.com/files/2015/04/figure51.jpg


The creature creator really shines late in the creature stage, when

the player has found a large number of creature components. The

player can completely strip down their creature and reform it on

each stage of its “evolution”, if desired. This includes an ability

to change the creature’s spine length and shape, to swap out and

add in functional creature components such as limbs and eyes,

to provide the creature with decorative elements, and to alter

its appearance. The procedural animation system reacts quickly,

and the player will receive immediate feedback when altering

limb placement. The creature immediately raises a newly added

limb to stare at it admiringly and make a sound of approval.

Nurturing Creativity and a Community

After only a few moments of play with the creature creator, its

broad appeal is obvious. The tool provides simple and casual

play—one of the design motivations was to have the player feel

like they are drawing with “magic crayons” (Gingold, 2003):

simple tools that are natural and easy to create with, yet

seamlessly imbued with artificial intelligence so that, as if by

magic, the crayons create an amplification of what is actually

drawn. The creature creator has the player interact as though

they are creating a lifeless, static model, and the computer

provides support to automatically turn that static model into a

real character. The procedural animation and texturing systems

underlying creature creator provide this “magic”. The tools allow

the player to feel creative agency, in that they can make

meaningful decisions about the creature’s appearance and some

characteristics, while relegating the more technically challenging

work of modeling, rigging, and animating to the computer. Spore

kickstarted the growing trend in games to support user-created

content. Games from the Little Big Planet (Media Molecule, 2008)

series and, more recently, Minecraft (Persson, 2011) are built

entirely around user-created content, but neither offer the kind

96



of procedural support that made Spore’s creation tools so simple

and engaging.

In addition to the creation tools, Spore provides means for players

to share what they have created with a broader audience, both

within and outside the game world. Whenever the player saves a

creature, it can be published to the Sporepedia, an online resource

storing information about every creature, vehicle, and building

that has ever been made for Spore. As of this writing (October

2014), the Sporepedia contains almost 186 million unique

creations, with hundreds of new creatures made each day.

Additionally, the game lets the player export video of their

creatures that is uploaded to YouTube, offering an additional

method for players to share their creative work with people

outside of the game.

Within the game, other players’ planets are randomly populated

with creatures from Sporepedia, with the option of using

creatures from a particular set of players by subscribing to

individuals’ “sporecasts”. This is where Spore begins to blur the

lines between procedural and user-created content, by using

user-created content as a means to achieve a common goal of

PCG: replayability. Each time the player begins a new game, the

environment they play in is shaped by the creations of other

players. Additionally, players can browse other creatures from

Sporepedia within the game, download them to their own game

and modify them further. This introduces a light social layer on

top of the user-created content, and encourages a community

of modding and sharing among players. This ability to modify

“parent” creatures downloaded from Sporepedia again flirts with

the idea of evolution without explicitly addressing it in

game—there is a sense that a creature can have a parent, and that

lineage is preserved in the metadata for the creature in Sporepedia.

However, this concept of parentage for creatures is drastically

removed from any basis in the actual science of evolution.

97



PCG Analysis

Spore is built heavily around the use of procedural content

generation to enable user-created content. In order to

understand how PCG is influencing the player’s overall

experience, see what makes the PCG in Spore successful, and

unpack how it also contributes the game’s controversy, it is

necessary to dive deeper into how the PCG system is designed.

This section will examine Spore’s use of PCG in comparison with

other games, as well as how PCG interfaces with the game’s

mechanics, dynamics, and aesthetic goals (MDA) (Hunicke,

LeBlanc, & Zubek, 2004).

Positioning Spore along Spectra

Broadly, there are three main spectra along which we can

compare PCG systems, defined here by their endpoints: 1) data-

intensive vs. process-intensive systems, 2) graphical vs. playable

content, and 3) developer vs. player authoring. Spore manages

to position itself at extremes along all these axes—the creature

creator, as discussed later in this section, even sits at both ends of

the data vs. process-intensive spectrum.

Many PCG algorithms are typically highly data-intensive,

drawing from a rich library of human-authored content and

recombining it using simple algorithms. This seems especially

prevalent in commercial games where the use of data-intensive

PCG means that the qualities of the content can be tightly

controlled through crafting the palette of building blocks used

by the system. Process-intensive systems, on the other hand, use

more sophisticated algorithms with a small and limited set of

building blocks; this is common in graphical PCG systems used

to create smoke or water (Ebert, 2003) where the algorithm can

dictate how individual particles flow to create emergent effects,

and also in more recent advances in PCG, such as evolving

weapons in Galactic Arms Race (Hastings, Guha, & Stanley, 2009).

98



Spore sits in an interesting position along this spectrum of PCG

systems. As a design tool, the game provides players with a great

deal of data—in the form of anatomical parts for the

creatures—for the player to piece together using their own

internal “algorithm” for deciding how the parts should fit

together. However, the PCG system itself is highly process-

intensive, using the raw 3D geometry created in the tool to

determine how the creature should act in the world through a set

of complex algorithms (Hecker, 2011).

Over time, PCG has moved from focusing on how to create

graphical environments and effects to creating content that the

player must deeply interact with, such as weapons and puzzles,

to even creating entire game rulesets (Hendrikx, Meijer, Van der

Velden, & Iosup, 2011). Spore sits closer to the “graphical” end

of this spectrum; it uses sophisticated tools to support creating

content that is only lightly interactive, from a design perspective.

The environments that are generated procedurally and even the

creatures do not need to support the player interacting with

them deeply—the creature creator effectively creates the

equivalent of canned animations that play when instructed by the

player. The player does not need to manipulate these behaviors

as part of gameplay.

Finally, it is interesting to look at PCG from the perspective of

whose authoring is impacted by the system. The earliest PCG

systems were created to allow a developer to create vast amounts

of content, essentially as a form of data compression (Braben

& Bell, 1984). In these systems, the developer is using the

algorithms as a means for authoring non-varied content. Control

over authoring is loosened in systems that use PCG for a variety

of aesthetic reasons, supporting content that changes on each

play and even adapts to player behavior. The next stage of

evolution for this spectrum is supporting the player directly

authoring content for games using procedural support. Spore was

99



one of the first games to use this form of PCG, letting the player

shift difficult parts of their design burden onto the computer.

MDA Analysis of PCG in Spore

Understanding how Spore’s use of PCG works relative to other

games that are PCG-enabled can help us see that the game is

an exemplar of PCG in games. It firmly established PCG as a

tool to support player authoring of rich, graphical content. To

better understand this role that PCG plays in supporting player

creativity, it is important to understand how the system fits in

to the overall design of the game. The following analysis builds

on a framework for understanding content generation in games

that was previously published (Smith, 2014). The framework and

vocabulary for describing content generation is based around

Hunicke et al.’s MDA framework, and is intended to help

understand the role that PCG plays towards a player experience

and a game’s design.

Aesthetically, Spore is a game about discovery—players discover

new generated worlds and new creatures that they can create.

These aesthetic goals are realized through the dynamics of

practicing the game mechanics in different settings and interacting

with a community of players. It’s important to note that these

dynamics do not arise directly from the use of PCG, but rather

from its indirect use in supporting the user-created content. The

use of PCG is core to the player’s overall experience—without the

content generator, there would be no user-created content, and

without user-created content, there would be no Spore. Yet it is

also acting firmly in a support role; it is user-created content that

drives Spore’s replayability and makes the game appeal to players

who want to flex their creative muscles.

Mechanically, the PCG in Spore’s creature creator plays an

interesting role. It operates online, able to respond immediately

to the player’s actions when creating their creature. This design

100



decision has remarkable impact on the experience of using the

creature creator. Instead of needing to wait until the creature

has been fully fleshed out and placed into the world to see how

it moves around, the player gets instantaneous feedback on the

decisions they have made and how that impacts the creature’s

behavior.

The player has strong compositional control over the creatures

they are creating—a rich library of creature parts, the ability

to shape the creature’s main body, and being allowed to place

the parts anyone on that body means that there is an extremely

wide variety of unique creatures that can be made using the tool.

The player can create almost any creature they can imagine, and

while all look stylistically similar in that they share a common art

and animation style, the player can still take creative ownership

over what they produced.

The other two facets of the mechanics of PCG in the creature

creator are more interesting to examine, as the player’s

perception of the system they are interacting with is quite

different from the reality. From the perspective of the player,

they are directly manipulating the creature, and the underlying

model for how the creature is assembled is as a combination

of experiential chunks of geometry. Each chunk has a clear set

of aesthetics and purpose for being added or removed from the

creature. However, the underlying PCG system operates on a

much different scale—the player is manipulating a creature that

is then taken, as a whole, as input to the procedural animation

system, and the knowledge representation used for the creature

is of raw geometry and a skeleton. The procedural support in the

creature creator does not understand the creature on the same

scale as the player. The player understands semantic information

about not just the appearance of the creature but also its

function. The PCG system understands only a set of vertices that

make up a creature to be textured and its underlying skeleton

that must be animated. And it is here, at the layer of

101



understanding the mechanical systems to that make up the PCG

of Spore, where the controversy surrounding Spore’s treatment of

evolution lies.

Mismatched Expectations

Spore is successful for exactly the same reason it has been

considered a failure. PCG is used to support player creativity,

and the system is expressive enough that it allows for the

creation of millions of unique creatures. But the ways in which

PCG is integrated into the tool also means it would never be able

to support the a rich model of evolution in the way that many

players had hoped, given the original marketing for the game.

The core issue is the mismatch between how players perceive

their interaction with the tool vs. how the interaction is actually

handled computationally. Players perceive that they are using

a data-driven tool; a set of customized lego blocks where the

player understands and communicates each blocks’

“evolutionary” function for the creature. But this semantic

information about the function of the creature is not at all

considered in the procedural support for the tool, and it becomes

the player’s responsibility to maintain a model of evolution, if

it is even desired. Spore is a game about creativity and player

expression.

Spore’s creature creator is not a tool intended to provide

intelligent support for the science-based design of creatures.

Rather, it is intended to help players realize a vision for making

creatures. The input to the procedural system is merely a mesh

and a skeleton, with no way for the creature creator to explicitly

reason about evolution as part of its support to the player. Nor

does this seem to be a goal of the system. The language of

evolution is used only to lightly frame the game, not as a core

mechanical component. The focus is on supporting players using

an engaging, simple tool to realize their creative potential.

102



This is what makes the creature creator so powerful as a creative

tool, and in turn what makes Spore a successful game. The player

can complete forget that the underlying PCG system is present,

and focus only on playing with the creativity toy. The ability for

the system to rapidly produce an animation for any arbitrary

geometry provides the player with the freedom to play with a

wide variety of creature combinations and immediately see their

creation come to life.

Conclusion

The successes and perceived failures of Spore are driven by its

use of PCG to support player creativity and user-created content.

Players can create a wide variety of polished, professional-

quality creatures that are automatically textured and animated.

Yet this user-created content lies at odds with some of the game’s

original stated goals of offering a rich simulation of the universe

and evolution. The game touches upon evolutionary themes on

occasion—allowing players to build creatures based on user-

selected “parents” or producing newer and more capable

creatures as a result of “mating”—but this theme is superficial.

Evolution cannot be modeled in Spore because the PCG for its

creature creator does not explicitly reason about it.

Despite failing to live up to some of its hype, Spore is a

groundbreaking game. It was the first game to really carefully

consider how to incorporate user-created content and provide

rich support for player creativity. It provided intelligent, playful

creativity tools that have not yet been paralleled in other games.

The hype over Spore as an evolution simulator and a deep

strategy game, and subsequent frustration over its inability to

deliver on these promises, have obscured Spore’s actual

contributions to game design: a deep focus on enabling player

creativity with the appropriate supportive tools to make players

feel like they are capable of creating vast worlds and

sophisticated creatures with ease and enjoyment.

103



(1) It appears to always be the player-controlled creature that lays

the egg. Either all playable creatures are biologically female, or

the player is to assume that sex of individuals does not matter for

sexual reproduction in Spore.

References

Braben, D., & Bell, I. (1984). Elite (BBC Micro). Acornsoft.

Ebert, D. S. (2003). Texturing & Modeling: A Procedural Approach.

Morgan Kaufmann.

Gingold, C. (2003, April). Miniature Gardens and Magic Crayons:

Games, Spaces, & Worlds (Master of Science in Information,

Design & Technology). Georgia Institute of Technology.

Retrieved from http://levitylab.com/cog/writing/thesis/

Hastings, E. J., Guha, R. K., & Stanley, K. O. (2009). Automatic

Content Generation in the Galactic Arms Race Video Game.

IEEE Transactions on Computational Intelligence and AI in Games,

1(4), 245–263. doi:10.1109/TCIAIG.2009.2038365

Hecker, C. (2011, February 25). My Liner Notes for Spore.

Retrieved from http://chrishecker.com/

My_liner_notes_for_spore

Hendrikx, M., Meijer, S., Van der Velden, J., & Iosup, A. (2011).

Procedural Content Generation for Games: A Survey. ACM

Transactions on Multimedia Computing, Communications and

Applications.

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A Formal

Approach to Game Design and Game Research. In Proceedings

of the 2004 AAAI Workshop on Challenges in Game Artificial

Intelligence. San Jose, California: AAAI Press.

104



Johnson, S. (2013, September 30). Spore: My View of the

Elephant. Retrieved from http://www.designer-

notes.com/?p=654

Maxis. (2000). The Sims (PC Game). Electronic Arts.

Maxis. (2008). Spore (PC Game). Electronic Arts.

Maxis. (n.d.). Sporepedia. Retrieved April 29, 2012, from

http://www.spore.com/sporepedia

Maxis Software. (2003). SimCity 4 (PC Game). Redwood City, CA:

Electronic Arts.

Media Molecule. (2008). Little Big Planet (Playstation 3). Sony

Computer Entertainment.

Persson, M. (2011). Minecraft (PC Game). Retrieved from

http://www.mojang.com/notch/mario/

Smith, G. (2014). Understanding Procedural Content

Generation: A Design-Centric Analysis of the Role of PCG in

Games. In Proceedings of the 2014 ACM Conference on Computer-

Human Interaction. Toronto, Canada.

105


