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Abstract: This paper presents a Game-Based Assessment model (GBA) designed to 
capture relevant information on play and testing whether it can constitute reliable 
evidence of learning. A central challenge for videogames research in education is to 
demonstrate evidence of player learning. Assessment designers need to attend to the 
ways in which game-play itself can provide a powerful new form of assessment. The 
GBA model has two layers: a semantic template that determines which click-stream 
data events could be indicators of learning; and learning telemetry that captures data 
for analysis. This study highlights how the GBA was implemented in a stem-cell 
science learning game, and shows how the GBA demonstrates a relationship 
between kinds of failure and learning in the game. 

 
Objectives and Theoretical Framework 
A central challenge for videogames in education is to demonstrate evidence of player learning. A 
typical approach to assess learning in games is to measure the quality of player learning in terms of 
independent, pre-post instruments. This process can compare game-based learning against other 
kinds of interventions, but, in treating the game itself as a black box, we lose the unique 
characteristics of the games as a learning tool. James Gee has suggested that games themselves 
provide excellent models for designing the next generation of learning assessments. Well-designed 
games reward players for mastering content and strategies, scaffold player activities toward greater 
complexity, engage players in social interaction toward shared goals, and provide feedback (through 
gameplay) that allows players to monitor their own progress (Gee, 2005). Rather than ignore the 
motivating and information-rich features of games in capturing learning, assessment designers need 
to attend to the ways in which game-play itself can provide a powerful new form of assessment. This 
requires learning researchers to think of games as both intervention and assessment; and to develop 
methods for using the internal structures of games as paths for evidence generation to document 
learning.  
 
This paper presents a Game-Based Assessment model (GBA) designed to capture data on player 
learning in the midst of game-play. The GBA model has been developed by the Games, Learning and 
Society (GLS) Research group as a process for capturing relevant information on play and testing 
whether it can constitute reliable evidence of learning. The GBA model draws on concepts and tools 
from evidence-centered design (e.g. Mislevy & Haertel, 2006), stealth assessment (Shute, 2011) and 
educational data mining (e.g. Baker & Yacef, 2009) to describe a strategy for building assessment 
tools into game design from the ground up in order to use game play itself as the barometer of player 
learning. 
 
GBA Model and Methods 
The Game-Based Assessment model is grounded in the content model and game-flow design of the 
game development process, and emphasizes two key layers: the semantic template and learning 
telemetry. Below, we describe each feature of the model in context of Progenitor X, a GLS game 
about regenerative medicine. 
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Figure 1: Game-Based Assessment Model 
 
The GBA model is designed to draw significant game-play moves from the game-context. The model 
has is integrated into an overall 4-layer GLS game design strategy: the content-model; the game flow 
design; the semantic template; and the learning telemetry (Figure 1). The first two layers, the content 
model and the game flow design, constitute the game design process. The content model outlines the 
learning goals for the game. The game flow design builds player interaction opportunities around 
these learning goals to create a gaming experience. The final two layers, the semantic template and 
the learning telemetry, form the assessment process. The semantic template selects relevant data 
from the click-stream generated by game-play; the learning telemetry layer collects and organizes the 
resulting data-record into player-profiles. Here we provide a brief overview of how these layers, using 
the game Progenitor X as an example, comprise a generic blueprint for our approach to assessment-
driven game design. 
 
Content Model. The content model for a GLS game consists of several content chunks that string 
together a series of core concepts along a process that represents current thinking in a domain. 
Because the resulting medium for interaction is a game, rather than a simulation, the design team is 
concerned with creating motivating conditions of play as well as the representational accuracy of the 
content model. Progenitor X provides an example.  
 
Progenitor X invites players to dissect, collect, cultivate, differentiate and treat diseased tissues via 
adult epithelial stem cells. Each verb in the content model provides an occasion for interaction. A 
process derived from professional practice provides a simplistic but coherent account of real scientific 
procedures, designed for accessibility to the study demographic of secondary school students. 
 
Game-flow design. The game is designed to motivate player interaction and learning. Through the 
iterative design process, the content model is embedded in a world that allows players to interact with 
the core ideas. The verbs of the content model are translated into key moments in interactive 
gameplay. Progenitor X embodies this process, taking the verbs of the content model and creating a 
turn-based puzzle game in which players assume the role of a regenerative biologist to prevent a 
zombie apocalypse. Based on the content model above, Progenitor players perform three main 
actions in game-flow: cultivate (or start a cycle of) cells, treat them, and then collect the resulting 
target material.  
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Figure 2: Progenitor X Game-flow Design 
 
Semantic template. The semantic template defines conceptual windows of interest in the game that 
represent key moments of learning. It is designed around the intersection of the content model with 
the game-flow design. The key question for semantic template design is: of all the clicks that players 
make in the game, which ones indicate learning? The semantic template represents a hypothesis 
about which in-game actions can generate interesting evidence of learning.  
 
In Progenitor X, the semantic template revolves around the start, treat, and collect verbs of the 
content model. The first sequence of player action is the cell cycle, in which players start, treat, and 
collect a group of vital cells. These new cells are used to create tissue in the next cycle (i.e. tissue 
cycle), where players use the same action sequence. Then comes an organ cycle, where the player 
uses the newly collected tissue to start, treat, and collect their way to a whole, healthy organ.  
 
 

 
    

Figure 3: Detailed Semantic Template of Progenitor X 
 
 
 
Learning telemetry. The learning telemetry layer collects the data specified by the semantic template 
and organizes it for analysis. It is a mechanism of the game environment that coordinates the 
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components of the game world into a sequential data-stream that enables analysts to track player 
paths across the game-world.  
 
In Progenitor, capturing telemetry started with identifying gameplay moments within the semantic 
template on an event-stream level. Significant click-stream events (over 400) around the action 
sequence (start, treat, and collect) were documented and flagged for recording. Then, search 
parameters were constructed, allowing reconstruction of interface cues as context for player actions. 
Lastly, a query schema was developed to pull the specified event-stream data from the massive 
database. Ultimately, through synchronizing GBA’s semantic template and learning telemetry, we 
were able to identify and collect three kinds of telemetric action-sequence data: cycle-specific, 
cumulative, and individual. 
 
 

 
Figure 4:  Learning Telemetry  -  Processed Telemetric Data Output 
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Data Sources and Evidence  
Data analysis required synthesizing learning telemetry data output with additional assessment. 
Specifically, we added two additional data sources to the core telemetric corpus: an adapted measure 
of success in gameplay, and data from an isomorphic pre- and post-test.  
 
In order to sort the player data into meaningful patterns, we developed an efficiency ratio that 
measured the number of successful cycle completions by a player over the number of times the cycle 
was tried. For example, if a player successfully collected the required number of cells in a cycle 2 
times, and tried to complete the cycle 5 times, the player’s efficiency ratio would be 40%. (The higher 
the percentage, the more efficient the play.) 
 

Efficiency Ratio = # of successes/# of tries 
 
We also aggregated results from the pre- and post- content assessment, which included a series of 
questions about the stem-cell content model based on consultation with stem cell biologists Dr. 
James Thomson, Dr. Rupa Shevde, and Dr. Gary Lyons. Here, we specifically looked at change in 
player performance on content questions as measured before and after gameplay.  
 
Results 
Aggregate results revealed intriguing reasons to look further into the “black box” of the game. First, 
with an 11% average increase in pre-post content scores, the game seemed to be a noteworthy 
learning vehicle. Interestingly, the aggregate efficiency ratios told us little about learning outcomes as 
measured by the post-test. Only in the last organ cycle of the game (the “boss level”) was the 
efficiency ratio correlated with pre-post gains (r = .3219). Thus, by the end mission of the game, being 
good at the mechanics was associated with learning the content model. However, we were unable to 
identify overall game mastery (as measured by player efficiency ratio) with content learning 
(measured by pre-post tests) elsewhere in game-play data. This led us to investigate what was going 
on with players within the specific game cycles.  
 

 Pre-Post Gains 
Total Gameplay 11% average increase 

(t-test sig = .0098) 
Efficiency Ratio no significant correlation 
Boss-level Efficiency Ratio significant positive correlation (r = .3219) 

 
Table 1: Aggregate Progenitor X Data Summary                                                  n=39, α = .10 

 
In order to examine player interaction, we mapped all possible cycle outcomes. Within a cycle, 
players populate (start) an initial grid with the right kinds of cells, and then transform those cells (treat) 
into a target cell/tissue to collect. After initial population with the right cell, the cycle can end in three 
ways: collecting the right cell (success), collecting the wrong cell (failure), or over-
manipulating/treating the cells so that the Ph becomes toxic (failure). 
 
Additionally, a player could have also initially populated the grid with the wrong cell (see red X in 
figure 5). In this case, there are two options for ending the cycle: collecting the wrong cell, or over-
manipulating the cells until the Ph levels (health) becomes toxic.  
 
The possible outcomes imply varying degrees of player compliance with multiple in-game cues (e.g. 
flashing buttons & in-game narration). To explore this idea, we clustered the types of failures into 
“near” and “far failure” (figure 5). We grouped 3 possible player outcomes: correct collection 
(successful); correct set-up but health runs out (near failure); incorrect setup and/or incorrect 
collection (far failure). 
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Figure 5: “Far Failure” In Progenitor Gamespace 
 
The analysis of far failure gave considerable insight into the player data. We found that the total 
number of “far failures” for players across all cycles was significantly negatively correlated with 
learning as measured by the pre-post tests (r = -.2788). Other indicators of play, including the number 
of cycles started, number of successful collects, and total cycles completed had no correlation with 
pre-post gains.  
 
To deepen our understanding of far failure, we divided students into quartiles according to pre-post 
change; the upper quartile had the largest gains in content question scores, while the lower quartile 
had the smallest. On average, lower quartile students had 7 cycles of “far failure,” while upper quartile 
students only had 2.3 (difference significant at α = .1). Concerning the number of “far failures” and 
pre-post change, the top students’ were positively correlated, while the lower quartile had strong 
negative correlation. Since both groups had comparable total NUMBERS of failures, the lower quartile 
had a greater proportion of “far failures;” thus, the latter’s losses in learning the content may be linked 
to their lack of responsiveness to the game cues. The pre-post correlation with this number suggests 
that certain types of failure, not failure itself, inform learning.  

 
 Upper Quartile Lower Quartile 
# of average “far” failure cycles 
(p=.0768) 

2.3  7 

 Sig. + correlation (r = .5796) 
with pre-post  

Sig. - correlation (r = -.9408) 
with pre-post  

Total failures No significant difference. No significant difference. 
 
Table 2: Summary of Quartile Findings                                        * n=20, α = 

.10 
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Conclusion and Significance 
The GBA model allowed us to move beyond a simple pre-post comparison of game play to learning 
outcomes by providing data on how players interacted with the game environment. The design of the 
semantic template allowed us to collect data at key moments in game-play; the learning telemetry 
allowed us to tag and assemble these click-stream data points into play profiles we could use for 
analysis. The resulting data allowed insight into the role of failure in Progenitor X game play. Games 
allow players to experiment with failure without real-world consequences. However, the kinds of 
failures players experience matter. Productive failure (Kapur, 2008, 2012) suggests that effective 
learning environments encourage students to activate prior knowledge as a condition for direct 
instruction. Progenitor X introduces players into an unfamiliar subject matter context (regenerative 
medicine), but in a familiar game-genre context (puzzle-based videogames). Familiarity with the 
game-conventions invites players to interact with a system in order to learn programmed relationships 
between cells, tissues, tools and cultures. One interpretation of our analysis is that productive failure 
happens when players bridge game-mechanic knowledge to content-model knowledge through game-
play; non-productive failure happens when players ignore the content model and treat Progenitor X 
solely as a colorful puzzle game with zombies. The richness of the data generated by the GBA will 
allow us to further explore the relations between player interaction and learning.  
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